DH cryptosystem - definizione. Che cos'è DH cryptosystem
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è DH cryptosystem - definizione

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

Airco DH.1         
  • 3-view
1915 MILITARY AIRCRAFT BY AIRCO
Dh.1; Airco D.H.1; DH.1; DH.1A
The Airco DH.1 was an early military biplane of typical "Farman" pattern flown by Britain's Royal Flying Corps during World War I.
De Havilland DH.18         
  • De Havilland DH.18 3-view drawing from ''Flight'', 24 March 1921
  • DH.18A ''G-EARO'' of Instone Air Lines
1920 BIPLANE AIRLINER BY DE HAVILLAND
DH.18; Airco DH.18; De Havilland D.H.18; De Havilland DH.18A
The de Havilland DH.18 was a single-engined British biplane transport aircraft of the 1920s built by de Havilland.
Airco DH.6         
1916 TRAINER AIRCRAFT BY AIRCO
D.H.6; Dh.6; Dh6; DH.6; De Havilland DH.6; Dh 6; Airco D.H.6; Alula D.H.6
The Airco DH.6 was a British military trainer biplane used by the Royal Flying Corps during the First World War.

Wikipedia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.